编写一个程序,找到两个单链表相交的起始节点。
例如,下面的两个链表:
1 2 3 4 5
| A: a1 → a2 ↘ c1 → c2 → c3 ↗ B: b1 → b2 → b3
|
在节点 c1 开始相交。
注意:
- 如果两个链表没有交点,返回
null
.
- 在返回结果后,两个链表仍须保持原有的结构。
- 可假定整个链表结构中没有循环。
- 程序尽量满足 O(n) 时间复杂度,且仅用 O(1) 内存。
方法一:哈希集合
思路和算法
判断两个链表是否相交,可以使用哈希集合存储链表节点。
首先遍历链表 headA,并将链表 headA 中的每个节点加入哈希集合中。然后遍历链表 headB,对于遍历到的每个节点,判断该节点是否在哈希集合中:
如果链表 headB 中的所有节点都不在哈希集合中,则两个链表不相交,返回 null。
复杂度分析
时间复杂度:O(m+n),其中 m 和 n 是分别是链表 headA 和 headB 的长度。需要遍历两个链表各一次。
空间复杂度:O(m),其中 m 是链表 headA 的长度。需要使用哈希集合存储链表 headA 中的全部节点。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
|
public class Solution { public ListNode getIntersectionNode(ListNode headA, ListNode headB) { Set<ListNode> visited = new HashSet<ListNode>(); ListNode temp = headA; while (temp != null) { visited.add(temp); temp = temp.next; } temp = headB; while (temp != null) { if (visited.contains(temp)) { return temp; } temp = temp.next; } return null; } }
|
方法二:双指针
思路和算法
使用双指针的方法,可以将空间复杂度降至 O(1)。
只有当链表 headA 和 headB 都不为空时,两个链表才可能相交。因此首先判断链表 headA 和 headB 是否为空,如果其中至少有一个链表为空,则两个链表一定不相交,返回 null。
当链表 headA 和 headB 都不为空时,创建两个指针 pA 和 pB,初始时分别指向两个链表的头节点 headA 和 headB,然后将两个指针依次遍历两个链表的每个节点。具体做法如下:
每步操作需要同时更新指针 pA 和 pB;
如果指针 pA 不为空,则将指针 pA 移到下一个节点;如果指针 pB 不为空,则将指针 pB 移到下一个节点。
如果指针 pA 为空,则将指针 pA 移到链表 headB 的头节点;如果指针 pB 为空,则将指针 pB 移到链表 headA 的头节点。
当指针 pA 和 pB 指向同一个节点或者都为空时,返回它们指向的节点或者 null。
证明
考虑两种情况,第一种情况是两个链表相交,第二种情况是两个链表不相交。
复杂度分析
时间复杂度:O(m+n),其中 m 和 n 是分别是链表 headA 和 headB 的长度。两个指针同时遍历两个链表,每个指针遍历两个链表各一次。
空间复杂度:O(1)。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
|
public class Solution { public ListNode getIntersectionNode(ListNode headA, ListNode headB) { if (headA == null || headB == null) { return null; } ListNode pA = headA, pB = headB; while (pA != pB) { pA = pA == null ? headB : pA.next; pB = pB == null ? headA : pB.next; } return pA; } }
|
参考连接:
https://leetcode-cn.com/problems/intersection-of-two-linked-lists/solution/xiang-jiao-lian-biao-by-leetcode-solutio-a8jn/
https://zhuanlan.zhihu.com/p/48313122